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Abstract: Although proof and reasoning are seen as fundamental components of 
learning mathematics, research shows that many students continue to struggle with 
geometric proofs. In addition, there is limited research on the link between the 
teaching and learning of proof.  Our research focuses on aspects of the classroom 
microculture, teacher’s pedagogical choices, and how these may impact student 
proof-construction ability in geometry.  We present quantitative and interview data 
that highlight students’ strengths and weakness with various aspects of formal 
proof.  Analyses of classroom episodes illustrate some of the social norms, 
sociomathematical norms, and classroom practices that may influence student 
proof-construction ability.  Although, teacher’s choices helped students develop an 
appreciation of the importance of diagrams and attention to detail, aspects of the 
pedagogy leave students ill-prepared to formulate logical arguments on their own. 
 

Classroom Factors Related to Geometric Proof Construction Ability 
Introduction 
Proof is fundamental to the discipline of mathematics because it is the convention 
that mathematicians use to establish the validity of mathematical statements.  In 
addition, the teaching of proof as a sense-making activity is fundamental to 
developing student understanding in geometry and other areas of mathematics.  
Despite the fact that student difficulty with proof has been well established in the 
literature, existing empirical research on pedagogical methods associated with the 
teaching and learning of geometric proof is insufficient (Chazan, 1993; Hart, 1994; 
Herbst, 2002; Martin & Harel, 1989).  Our work in this area has begun to address 
the need for research into the pedagogy of geometric proof instruction.  We focus 
on formal geometric proof because high school geometry is traditionally the course 
in which students are first required to construct proofs.  As well, formal proofs are 
typically what students in many parts of the world see and do as part of a proof-
based geometry course. 

                                                 
1 This manuscript is based upon work supported by the National Science Foundation under 
Grant No. 9980476. Any opinions, findings, and conclusions expressed in this material are 
those of the authors and do not necessarily reflect the views of the National Science 
Foundation. 
 



Martin and McCrone                                                                                                                                19 

In this paper we summarize findings that connect student ability to construct proof 
in geometry and classroom factors that may influence that ability.  More 
specifically, we address two objectives: 

1. To characterize the psychological aspects of students’ evolving proof-
construction ability in proof-based geometry classes in order to update 
and expand existing research in this area; 

2. To link students’ geometric proof-construction ability to the classroom 
microculture as well as to teachers’ pedagogical choices. 

 
This work is part of a larger three-year study that focuses on several aspects of 
student understanding of proof in geometry and pedagogical influences on student 
learning in this domain. 
 

Theoretical Framework 
The theoretical framework for our research takes into account student 
understanding of proof as well as the social factors that may influence 
understanding.  For this study we focus on two important factors, namely, the 
classroom microculture and the teacher’s pedagogical choices (Simon, 1995; Stein, 
Grover, & Henningsen, 1996; Yackel & Cobb, 1996).  Figure 1 illustrates the 
components of the microculture and pedagogical choices, and how these may 
influence student proof construction ability. 

 
The theoretical lens through which we view students’ mathematical development 
and the factors influencing that development is associated with the emergent 
perspective as described by Cobb and Yackel (1996).  This framework is useful in 
that it attempts to describe individual learning in the social context of the 
classroom.  Thus, student ability to construct proofs is seen as constructed on both a 
psychological level and a social level.  From a psychological perspective, several 
researchers have characterized students’ understanding of proof in terms of their 
reasoning ability and formal proof-construction ability (Balacheff, 1991; Harel & 
Sowder, 1998; Senk, 1985).  In this paper, we focus on students’ ability to perform 
increasingly difficult formal proof-construction tasks.  We assessed the level of 
difficulty of formal proof tasks using a modification of the difficulty levels 
described by Senk.  
 
From a social perspective, elements of the classroom microculture as described by 
Cobb (1999) also influence students’ ability to construct proofs.  In particular, social 
norms, sociomathematical norms, and classroom mathematical practices comprise 
the classroom microculture in which the expectations and collective understanding 
about what it means to write proofs is continually being constituted.  Social norms 
are  defined as  normative  aspects of the  classroom that  may  apply to any  subject  
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Figure 1. Social factors influencing student understanding of proof. 
 

area, such as the expectation that all solutions must be justified.  Sociomathematical 
norms refer to evolving classroom norms that specifically refer to mathematics, 
such as what counts as a unique mathematical solution or what is thought to be a 
clever problem solving strategy.  Classroom mathematical practices refer to taken-
as-shared practices that relate to specific mathematical ideas such as acceptable 
methods for proving triangles congruent (Cobb, 1999; Cobb & Yackel, 1996). 
 
We also focus on teachers’ pedagogical choices, recognizing the significant impact 
these choices may have on the evolving microculture of the classroom as well as on 
students’ opportunity to learn how to construct proofs.  We define pedagogical 
choices to include the choice of mathematical tasks, the daily routine, the 
instructional strategies, and the teachers’ expectations about student ability. 

Methods 
During the first year of the study, we collected data in two proof-based geometry 
classes taught by two different teachers in a large high school in the mid-western 
United States. Researchers observed and videotaped the two geometry classes 
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almost daily for the four months in which proof was a major focus of the 
curriculum. 

To assess the students’ ability to construct proofs, we administered a performance 
assessment instrument, the Proof Construction Assessment, to all students in the 
two participating classes.  The Proof Construction Assessment included items at 
varying levels of difficulty (Senk, 1985).  Items at the first level required students to 
fill in the blanks in a partially constructed two-column proof.  Items at the second 
level of difficulty addressed students' understanding of conditional statements.  The 
local deductions items, level three, assessed students' ability to draw one valid 
conclusion from a given statement and to justify the conclusion.  Items at the fourth 
level of difficulty required students to engage in multi-step reasoning with hints 
provided.  Items at the fifth level required students to independently generate a 
complete, multi-step formal proof.  In addition to some original items, the 
instrument includes items modified from Senk (1985) and from the Third 
International Mathematics and Science Study (TIMSS) (1995). 
 
Clinical interviews were conducted with ten focus students in order to clarify their 
written responses on the Proof Construction Assessment and to further assess their 
proof-writing abilities.  In particular, students were asked to compare and assess 
several student-written proofs and to create at least one original proof during the 
interview.  
 
The Proof Construction Assessment and the clinical interviews provided two lenses 
with which to interpret students' individual proof-construction ability.  In addition, 
observations, video recordings and other data helped us to learn about the social 
context for the development of proof-construction ability in order to interpret this 
information and connect the social aspects of students’ experiences to the 
psychological abilities they displayed.  
 

Results and Discussion 
In this section, we describe the results from the Proof Construction Assessment and 
clinical interviews in order to characterize the psychological aspects of students’ 
evolving proof construction ability.  We also describe aspects of the classroom 
microculture and the participating teachers' pedagogical choices and discuss how 
these factors may have influenced students’ ability to write formal proofs. 

Proof Construction Ability 
Results from the Proof Construction Assessment are found in Table 1. The table is 
organized by difficulty level in order to demonstrate the relationship between level 
of difficulty and student performance. Student performance was poorest on items 2 
and 4, which were assessed as the most difficult. These items required students to 
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write original proofs of statements based on given conditions. Even though students 
also needed to write a proof for item 5 (see Figure 2), they were provided with ideas 
for outlining the proof. Strong student scores on item 5 also may be due to students’ 
familiarity with the content (similar triangles), as the performance assessment 
instrument was administered shortly after the completion of a unit on similar 
triangles.  
 
Table 1  
Student Performance on the Proof Construction Assessment. 
Item Number Item Type 

Note: ( ) indicates level of difficulty given for the item, where 1 is easiest and 5 is 
most difficult. 

(level of difficulty) 
Avg. Score as a 
percent for Mrs. 

Anderson’s students

Avg. Score as a 
percent for Mrs. 
Betts’ students 

1 Fill in proof (1) 61.6 69.5 
3 Conditional statements (2) 66.5 76.7 
6 Local deductions (3) 42.3 39.0 
5 Proof with hints (4) 52.3 70.5 
4 Unsupported synthetic proof (5) 33.1 30.5 
2 Unsupported analytic proof (5) 22.3 27.4 

Total  46.7 51.1 

 
Although item 6 (see Figure 3), local deductions, was classified as level 3, student 
performance was poorer on this item than on item 5 (Figure 2), proof with hints, 
which was classified as level 4. In comparing items 5 and 6, it should be noted that 
item 6 is completely open-ended whereas item 5 contains an outline of the proof. 
More specifically, to successfully complete item 6, students must draw a single 
deduction from given information.  Even though multiple deductions are required 
for item 5, students know what the string of deductions should lead to, and they are 
also provided with geometric properties that may be key components of the 
argument.  Thus, the open-ended nature of item 6 appears to be a better factor for 
determining level of difficulty for the students who participated in the study. 
 
Student performance was best on items 1 and 3, which were assessed to be at the 
two lowest difficulty levels.  For item 1, students were asked to fill in the missing 
statements or reasons for a proof that had been developed for them.  For item 3, 
students were required to write a conditional statement and then use this statement 
to determine what information was given and what was necessary to prove if asked 
to justify the conditional statement.  
 
During clinical interviews, many students claimed that an inability to recall 
definitions,  theorems, and postulates made it difficult for them to assess or produce  
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Given:  Quadrilateral KLMN is a parallelogram.   
 Segments LQ  and KN  intersect at P. 

 N is on line MQ← → ⎯ 
 

 
 
 
 
 
 
 
 
 
Prove: ∆KLP is similar to ∆NQP 
 
Several hints about how this proof may be constructed are provided below.  Please use 
some of these hints to write a valid proof that ∆KLP is similar to ∆NQP. 
 
Hints: 
Recall that one way of proving that triangles are similar requires showing that two pairs 
of corresponding angles in the triangles are congruent.  Use the quadrilateral to identify 
a pair of parallel lines.  Use properties of parallel lines and related angles to identify 
pairs of congruent angles.  You may also find other congruent angles in the diagram. 

 
Figure 2. Proof Construction Assessment Item 5. 

 
 

 
 

For each part, write a logical conclusion that follows from the given set of conditions.  
Also, record a reason that supports each conclusion. 
 
a.  Given:  Three distinct points A, B, and C lie on a line. AB=BC. 
Conclusion: _____________________________________________ 
Reason: ________________________________________________ 
 

 
 b.  Given:  XY  intersects ZW  at point P.  Point P is between X and Y.  Point P is 

between Z and W. 
Conclusion: _____________________________________________ 
Reason: ________________________________________________ 
 

 

K 
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Q

Figure 3. Proof Construction Assessment Item 6 – parts a and b. 
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proofs both on the Proof Construction Assessment and in the interview.  When the 
geometric content was somewhat familiar to the students, they were able to talk 
through aspects of the given information (or provide a diagram) and eventually 
provide at least a start of an outline for a proof.  When the content was unfamiliar, 
most students had difficulty building chains of reasoning or even providing one 
valid conclusion from a given statement. 
 
A second important result from the interviews was the students’ stated preference 
for two-column proofs rather than other formats that had been shown in class, such 
as flow-chart or paragraph proofs.  On the Proof Construction Assessment, students 
almost exclusively used the two-column format to write proofs.  When students 
were asked to rank similar proofs in paragraph form and two-column form, all 
students ranked the two-column proof higher, although the logical arguments 
presented in both formats were essentially equivalent. 
 
Pedagogical choices 
Both teachers followed the order and scope of the textbook quite closely.  The 
typical daily routine involved discussing homework assigned from the textbook, 
demonstrating new material, and practicing new material on textbook-like 
worksheets.  The introduction of new ideas typically was teacher-directed through 
lecture and questioning. 

Although the two classrooms were similar in many respects, the difference in 
number of years of experience, and, perhaps, resulting familiarity with content, 
allowed the more experienced teacher to respond more flexibly to classroom 
situations and to students.  For example, Mrs. Betts, who had more than 20 years of 
experience as a teacher, encouraged student-to-student discussions of homework 
and in-class assignments. (This name and all others that follow are pseudonyms.)  
Although Mrs. Betts’ class discussions were generally teacher-led, she was more 
willing to follow up on students' mathematical suggestions that strayed from the 
planned solution.  In contrast, Mrs. Anderson, who had been teaching mathematics 
for five years, gave students very little opportunity to discuss proofs with each 
other.  Mrs. Anderson rarely strayed from teacher-directed activities and exhibited 
errors in her reasoning and in structuring logical arguments more often than Mrs. 
Betts. 

Through interviews and informal conversations with researchers, both teachers 
shared their belief that students needed to have proofs demonstrated, because 
constructing proofs independently was too difficult for the students.  As a result, 
teachers expected students to emulate the teacher's approach for solving problems 
and writing proofs.  
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Episode 1 illustrates how some of Mrs. Anderson’s expectations were manifested in 
her instructional strategies and in her selection of mathematical tasks.  After 
presenting one or two new definitions, theorems, or postulates, both teachers 
typically assigned in-class worksheets and textbook homework that included several 
proofs applying the new facts.  In Episode 1, Mrs. Anderson handed out a 
worksheet containing several proofs that were similar in format, length, and logical 
reasoning pattern.  Before allowing students to get started on the worksheet, Mrs. 
Anderson demonstrated one of the proofs on the worksheet for them. 
 
Episode 1 

Mrs. A: There’s only seven of them and then the bonus. I think I’m gonna 
try just doing one with you and see what you can do with these on your 
own…Remembering that in order to prove the lines parallel you have to 
focus on one of those special pairs of angles.  If you can find something out 
about the alternate interior angles or the corresponding angles or the 
consecutive interior angles, those are the ones that you know something 
about.  That you know the relationships exist if you have parallel lines.  So 
you’d be enforcing the converse of those theorems by trying to prove the 
lines parallel in that way.  Let’s look at the first one.  
 

By demonstrating one of the proofs on the worksheet and describing the logical 
reasoning pattern required to construct all the proofs on the worksheet, Mrs. 
Anderson restricted the scope of the task.  Students were not required to construct a 
reasoned argument.  Rather, they were left only to fill in the details of already 
structured arguments.  This pattern of modeling proof "types" before asking 
students to complete similar proofs was typical for both teachers. 
 
Classroom Microculture 
Because many social norms, sociomathematical norms, and classroom 
mathematical practices are established through choices made by the teacher, our 
discussion of the classroom microculture reflects the reciprocal influences of 
classroom microculture and pedagogical choices.  For example, one prevalent social 
norm that was potentially related to students’ proof construction ability was the 
sense that the teacher was the authority. In both classrooms, teachers were the focal 
point of instruction.  The teachers took primary responsibility for constructing 
convincing arguments and validating student responses.  During class discussions, 
students’ responses were typically one word or phrase, which the teacher expanded 
upon in order to create a full justification (see Episode 3 for another example). 

Another social norm was the expectation that all solutions be justified.  In both 
classrooms, it was not sufficient to make a statement without an accompanying 
reason.  When students described geometric relationships in a problem or proof, 
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teachers typically asked, “Why?” “How do you know?” or “What’s the reason?”  
Although it was often the teacher who provided the reason, students were aware 
that a reason was required. 

A sociomathematical norm that was constituted in the classroom was the sense that a 
valid solution was one that was presented using mathematical conventions, whether 
or not the reasoning was correct.  As the semester progressed, students presented 
their solutions using the convention preferred by the teacher (e.g., two-column 
proofs with certain acceptable abbreviations), and subsequently indicated a 
preference for solutions in two-column format when asked to critique others’ work. 

There were three classroom mathematical practices that became taken-as-shared 
understandings about proof in geometry.  The first of these mathematical practices is 
the importance of details in proof writing.  The second is the understanding that only 
certain methods are valid for establishing the congruence of overlapping triangles.  
Third, students came to accept that marking diagrams is an essential part of the 
proof-writing process.  Short episodes from the classrooms are included to give the 
reader a sense of typical classroom conversations and how the mathematical 
practices were manifested by the teacher and students. 
 
In Episode 2, Mrs. Betts reviewed a proof that a student had written on the board. In 
one part of the proof, the student, Hallie, was given that two pairs of segments ( DE  
and EG , BF  and EG ) were perpendicular (see Figure 4). Hallie's conclusion was 
that ∠DEF and ∠BFG were congruent. Although Mrs. Betts did not comment on the 
general reasoning or the validity of the proof, she noted that there seemed to be some 
missing steps related to the congruent angles. She invited all students to help Hallie 
figure out what should be written in order to fill in the missing details of the proof.  

Episode 2 
Nathan: Can we say… you know that ∠DEF is congruent to ∠BFG? 
 
Mrs. B: The question is ‘how do you know they are congruent?’ What 
information do you have that's letting you say they are congruent? All the 
information you have has been listed here, so far. 
 
Hallie: I should have said something like, because these two segments were 
perpendicular, then the angles are congruent. 
 
Mrs. B: OK. Let's go back to that statement. If these two segments are 
perpendicular, then… how do you finish that? 
 
Hallie: Then… (unsure how to respond) 
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Nathan: They form right angles. 
 
Mrs. B: Yeah, but that's not said here yet [in the proof]. You haven't said 
that they form right angles yet. So before you say the angles are congruent, 
you have some things you have to insert here. 
 

After making this last statement, Hallie returned to the board to fill in the details as 
requested by Mrs. Betts.  Mrs. Betts made no further comments on the proof as a 
whole or on Hallie's added details.  Both Mrs. Betts and Mrs. Anderson spent 
considerable time with the students to help them get the details of a proof.  This 
appeared to be important to the teachers in the proof-writing process, and became 
an important part of what the students focused on in their proofs and proofs written 
by others. 

In Episode 3 we encounter Mrs. Anderson near the end of class time.  She was 
introducing the homework assignment and what was required of the students.  With 
very little student input, she verbally walked through the first of the assigned 
problems (see Figure 5). 

Episode 3 
Mrs. A: What I’ve given you are several more proofs… What you need to 
do is tackle these the same way you’ve tackled the proofs you’ve done for 
the last three days…  In the first one, mark angle P and angle S as the 
congruent angles. That’s given. And then mark segment PQ and SQ as 
congruent segments.  What else in the figure is important?  What else is 
there that you think you should identify that’s going to help you make those 
two triangles congruent? 
 
Dottie: Q 
 
Mrs. A: Yeah, angle Q. That reflexive angle again is showing up shared in 
both triangles.  So you would identify that as being angle Q.  Angle PQS 
congruent to angle…Let’s see. PQR is congruent to angle SQT, by the 
reflexive property.  You could show the triangles congruent by ASA.  Some 
of them [assigned proofs] stop with congruent triangles.  Some of them ask 
you to go on and show some corresponding parts.  None of these proofs are 
extremely lengthy.  They’re probably 4 or 5 step proofs. 

As in Episode 1, Mrs. Anderson provided an outline for this proof and suggested that 
students follow it for the other exercises on the worksheet.  In this case, Mrs. 
Anderson  modeled  the  method for  proving  overlapping  triangles  congruent and  
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  F is the midpoint of EG  
  DF  || BG  

Prove:  ∆DEF is congruent to ∆BFG 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 4. Homework problem associated with Hallie’s proof. 

 
 
 
Given:  ∠P ≅ ∠S  
  PQ ≅ SQ  
Prove:  ∆PQR ≅  ∆SQT 
 
 
 
 
 
 
 
 
 
 

 
 
 

D B 

E F G 

Q 

R 

S P 

T 

Figure 5. Congruent overlapping triangles problem. 
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drew upon an already taken-as-shared method for proving any two triangles 
congruent.  A second classroom mathematical practice illustrated in Episode 3 is the 
expectation that students mark their diagrams in prescribed ways in order to record 
information that will be used in the proof.  In this episode, Mrs. Anderson tells the 
students exactly what should be marked.  During interviews with the focus students, 
many commented on diagram marking as an important part of the proof writing 
process.  
 
In both Episodes 2 and 3, we see aspects of the microculture as well as teacher’s 
pedagogical choices.  In Episode 2, the teacher emphasized the importance of 
justifying every step in a proof as well as the critical need to focus on the details.  
The teacher did not commend the students for laying out a reasonable logical 
argument, but rather, emphasized the need to have each step follow from the 
preceding step.  In Episode 3, the teacher-led discussion indicated to students that 
they did not need to take much responsibility for structuring a proof.  In class, it 
was almost always the teacher who had the mathematical authority to produce and 
assess the validity of proofs.  Students rarely had to invent the pattern of reasoning 
for a proof.  Much of the reasoning was done for the students by the textbook, that 
grouped isomorphic proofs together, and the teacher who provided the sample on 
which to pattern the practice proof exercises.  The students’ job was to focus on the 
details.  Perhaps, these aspects of the microculture, along with the teachers’ 
pedagogical choices, account for students’ ability to complete fill-in proofs and 
construct a proof with hints provided, and their inability to draw conclusions 
independently or construct proofs without hints. 
 

Conclusions 
Our finding that students have great difficulty generating complete proofs echoes 
the findings of Senk (1985) and others (as reported in Hart, 1994; Healy & Hoyles, 
1998).  It is our investigation of the classroom microculture and teachers’ 
pedagogical choices and their connection to students' proof construction ability that 
sets our work apart from the existing literature.  Here we summarize several factors 
discussed in this paper that may have influenced student performance on proof 
construction items.  

The examination of teachers’ pedagogical choices illuminates various factors that 
contributed to taken-as-shared classroom practices related to constructing proofs.  
Three of these choices are: (a) the teachers’ choice to use materials that group 
proofs that require a particular strategy, (b) the teachers’ choice to demonstrate or 
provide a model of the needed proof strategies before setting students to work, and 
(c) the teachers’ choice to focus on the details of a proof more than the overall 
logical structure of the proof.  
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As a result of the participating teachers’ choices, several related norms and 
mathematical practices developed in the research classrooms.  For example, 
students were aware of how the proof-writing process was supposed to look: first 
mark the diagram, and then write a formal proof in two-column format.  However, 
students were not responsible for producing proofs other than those that fit a format 
or strategy described by the teacher.  Hanna (2000) characterized this type of proof 
construction as the “rote learning of mathematical proofs, devoid of any educational 
value” (p.10). 

Some of the teachers’ choices and the resulting classroom microculture may be 
explained by what Herbst (2002) described as the didactical contract between 
teacher and student. Herbst claimed that the didactical contract (the teacher’s 
responsibility to teach for understanding and the students’ responsibility to learn) 
will lead the teacher to make choices so that students will be successful at 
constructing formal proofs.  However, although students appear to have success in 
an immediate context (e.g., in class, on homework), this success is not long lasting.  
Rather, when students are faced with a variety of problem types for which a logical 
outline is not provided, they have little independent reasoning ability to draw upon. 

The study described here provides a glimpse into the teaching practice of two 
teachers whose pedagogical strategies are similar.  We recognize this as a limitation 
and acknowledge that further investigations in diverse settings would provide more 
insight into how other pedagogical approaches may influence the learning of proof.  
However, the data from this study suggest that teachers need to be cognizant of the 
power that classroom microculture and pedagogical choices can have in influencing 
students’ understanding of proof.  Although there are certainly many factors other 
than those highlighted that contribute to proof construction ability, this study is a 
step toward filling the research gap linking pedagogy and student understanding of 
formal proof. 
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